Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. biol ; 68(2): 447-452, May 2008. tab
Article in English | LILACS | ID: lil-486775

ABSTRACT

Even though the molecular mechanisms underlying the Down syndrome (DS) phenotypes remain obscure, the characterization of the genes and conserved non-genic sequences of HSA21 together with large-scale gene expression studies in DS tissues are enhancing our understanding of this complex disorder. Also, mouse models of DS provide invaluable tools to correlate genes or chromosome segments to specific phenotypes. Here we discuss the possible contribution of HSA21 genes to DS and data from global gene expression studies of trisomic samples.


Embora os mecanismos moleculares que causam a síndrome de Down (SD) não sejam totalmente conhecidos, a caracterização de genes e seqüências não gênicas conservadas do HSA21 e os estudos de expressão em grande escala em amostras de pacientes com SD estão aumentando o entendimento da síndrome. Por outro lado, os modelos murinos da SD provêm ferramentas valiosas para correlacionar genes ou segmentos cromossômicos a características fenotípicas específicas. Nesta revisão, são discutidas as possíveis contribuições dos genes do HSA21 à SD e os dados de estudos de expressão gênica global de amostras trissômicas.


Subject(s)
Animals , Humans , Mice , /genetics , Down Syndrome/genetics , Gene Expression Profiling , Disease Models, Animal , Phenotype
2.
Braz. j. med. biol. res ; 37(6): 785-789, Jun. 2004. ilus
Article in English | LILACS | ID: lil-359899

ABSTRACT

The Down's syndrome candidate region 1 (DSCR1) protein, encoded by a gene located in the human chromosome 21, interacts with calcineurin and is overexpressed in Down's syndrome patients. As an approach to clarifying a putative function for this protein, in the present study we used the yeast two-hybrid system to identify DSCR1 partners. The two-hybrid system is a method that allows the identification of protein-protein interactions through reconstitution of the activity of the yeast GAL 4 transcriptional activator. The gene DSCR1 fused to the GAL 4 binding domain (BD) was used to screen a human fetal brain cDNA library cloned in fusion with the GAL 4 activation domain (AD). Three positive clones were found and sequence analysis revealed that all the plasmids coded for the ubiquitously expressed transcript (UXT). UXT, which is encoded in human Xp11, is a 157-amino acid protein present in both cytosol and nucleus of the cells. This positive interaction of DSCR1 and UXT was confirmed in vivo by mating the yeast strain AH109 (MATa)expressing AD-UXT with the strain Y187 (MATalfa) expressing BD-DSCR1, and in vitro by co-immunoprecipitation experiments. These results may help elucidate a new function for DSCR1 and its participation in Down's syndrome pathogenesis.


Subject(s)
Humans , Calcineurin , Down Syndrome/metabolism , Biomarkers , Brain , DNA-Binding Proteins , Electrophoresis, Agar Gel , Gene Expression Regulation , Protein Interaction Mapping , Signal Transduction , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL